
Paris協定達成へ温室効果ガス排出削減 2050年 実質排出ゼロを目指して 30年研究

最初の日本政府公式CO2排出量推計を森口祐一氏と担当 英文報告書も作成

CO2排出削減に向けて 発生源により異なる対策

素材生産→材料転換 Ex. セメント→ケイ素系 石油化学→ NSFセルロース系

運輸

長距離輸送削減

素材生産と運輸で排出のちょうど半分

50%、5.9億tCO2排出

そのGDPは60.0兆円、11%

他産業GDP482.3兆円89%、4.0億tCO2、33%排出

CO2排出と生産額は直接関係弱い

別に家計消費366.1兆円,2.0億tCO2、17%排出

CO2排出量11.9億t(2017年度)

国内生産額542.1億円(2017暦年)

機械→小型化

サービス産業→ 電源転換→再生エネ

その他産業

生産額当CO2排出量

鉄とセメント つくる責任・つかう責任(SDGs12)

- 鉄鋼生産 高炉転炉鋼・圧延等含2.21 tCO2/t生産*a、誘発含2.43 tCO2/t生産 うち転炉鋼コークス(焼結等含) 0.800tCO2/t転炉鋼生産
- うち還元コークス 0.634tCO2/t転炉鋼生産 →水素還元にすると0.6t削減
- うちドロマイト等分0.072 tCO2/t転炉鋼生産

電炉鋼・圧延等含0.71 tCO2/t生産*a 誘発含0.91 tCO2/t生産

セメント生産 0.80tCO2/t生産、うち石灰石起源分0.46 tCO2/t生産*b橋・トンネル等、日本の老朽都市基盤施設を更新水害、震災、他 災害復旧工事 →日本でコンクリート→セメント消費途上国の都市化:大型ビル建設、都市基盤施設、道路、空港等整備→海外でコンクリート→セメント消費中国で世界の半分セメント生産消費20億トン以上/世界40億トン中国のセメント生産だけで日本計以上のCO2排出

素材変革と加工変革が工業品生産と消費を一変させる

• 素材変革

SNFセルロースナノファイバー、炭素繊維 SNFガラス窓代替品 透明・軽い サッシュもSNFで作成 海マイクロプラ汚染→プラスチック代替品:生物原料素材へ 例:カニの殻利用・キチン質素材等 木造建築とくに非住宅の推進→セメント消費減 3Dカッターを使った新しい建築構造

・加工変革 3 D技術 消費者が自分で創造デザインの時代へ →一品生産→脱工業生産社会 全員Proshumer

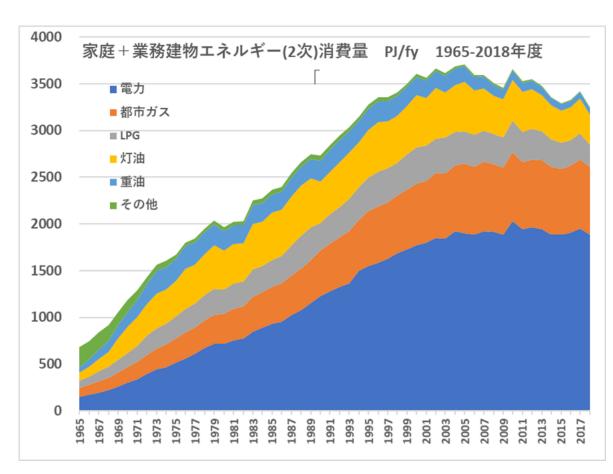
温室効果ガスGHGs排出ゼロを目指す生産技術転換

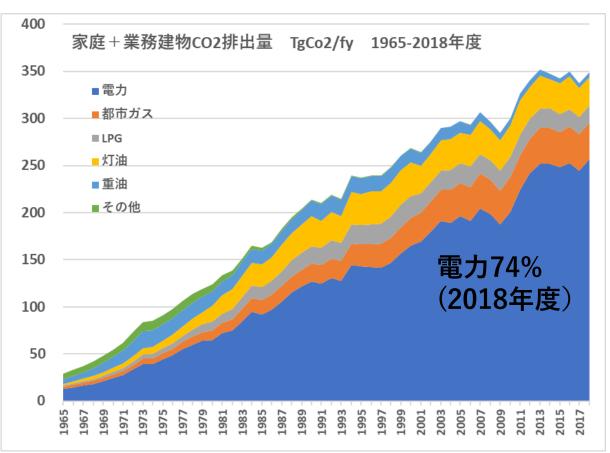
素材転換:脱石油化学プラスチック→木質3D技術加工品、圧縮木材製品、SNFナノセルロースファイバー、炭素素材、ケイ素素材、金属使用を特殊目的(noble.use)限定へ、希少金属類依存を低下させ、完全リサイクル前提資源使用、生物系素材(例:養蚕復興、例:クモの糸を人造化、カニ甲羅原料等)へ

全再生エネ・完全脱化石燃料:再生エネ電力供給変動と電力需要変 動の完全調整実現へ

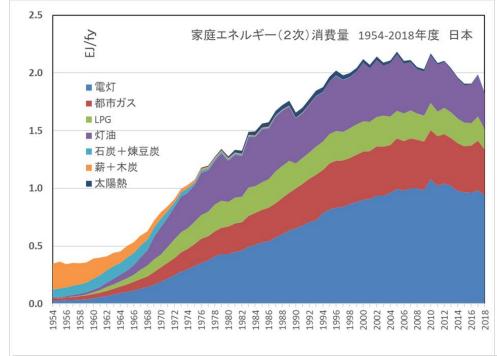
PVC太陽光発電と風力(主に洋上)主体に地熱、波力、海洋温度差発電、有機物残渣バイオ燃料

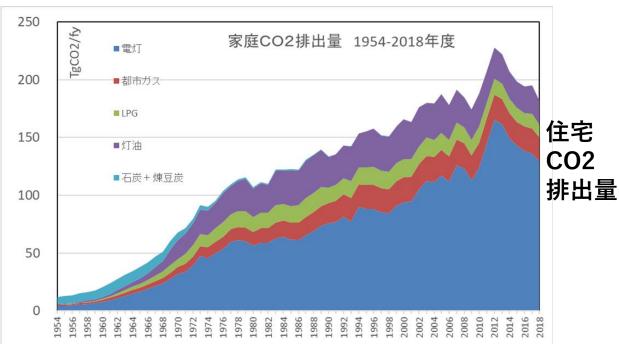
脱セメント、国産木造建築推進、老朽都市基盤施設更新(セメント 不使用)

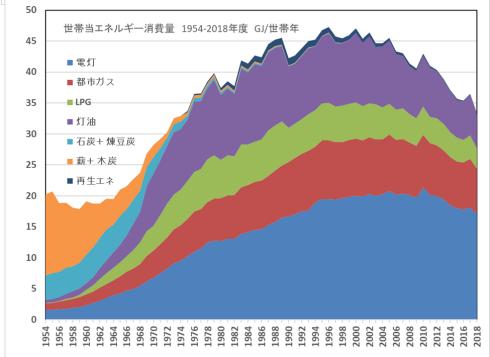

洪水危険回避、地震・津波対策、火山爆発対策

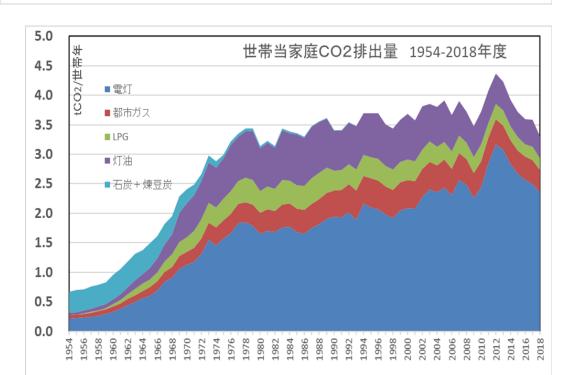

建築分野 削減効果の時間遅れ Lock-in Risk

- 業務建築と都市 世界一市場資本主義ビジネス社会の終焉後巨大都市は不要になる? Lock-in予防 河川中流域 津波安全・人間規模・環境理想都市
- ・生活と居住 日本の現状は最悪 理想に程遠い住居こそLock-in Risk 住宅敷地から全部再考 大都市居住志向から農山村居住有利の時代へ 真の豊かさ エネ供給、交通手段の大変化→情勢転換 現代版・鴨長明生活を楽しむ
- →Paris協定をきっかけに 都市、業務建築、住宅 東京と地方の関係、都市、郊外、農山漁村、山間地の構造 すべてを再考 日本国土利用を全面変革計画へ Post2050持続可能社会構想へ


民生部門 = 住宅 + 業務 74%は電力CO2排出 省エネ努力が石炭火力増大で相殺


電化+CO2排出係数↓ 石炭火力→再生エネ電力増大へ 海上風力新設必要




住宅 エネ 消費量

世帯当 住宅 エネ

世帯当 住宅 CO2 排出量

家庭1人当エネ消費とCO2排出量

1人当家庭エネルギー消費量(2次) GJ/人年

1954-2018年度

18.00

16.00

14.00

12.00

10.00

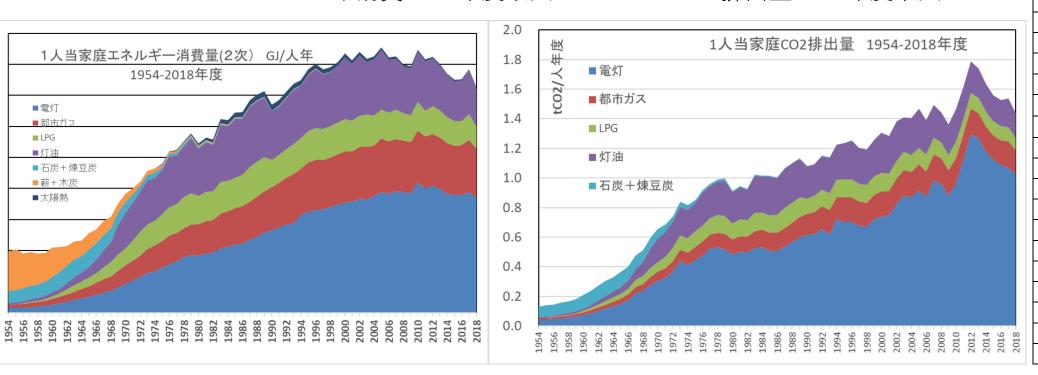
8.00

6.00

4.00

2.00

■電灯


LPG

■太陽熱

■石炭+煉豆炭

エネ消費2005年度最大

CO2排出量2012年度最大

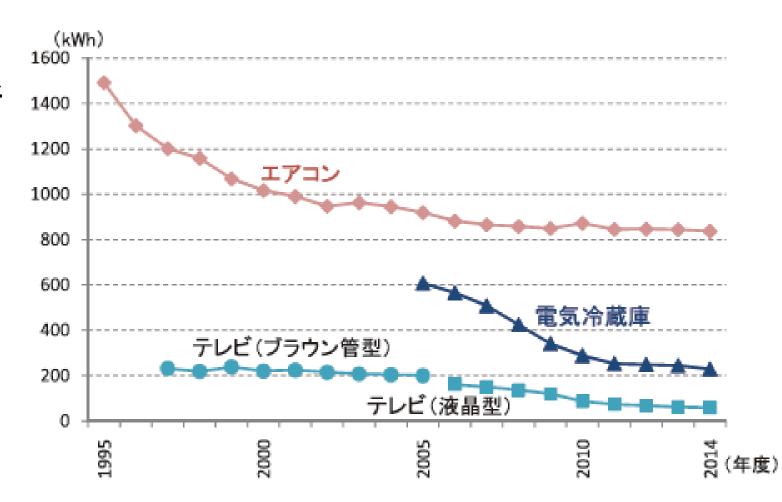
	118002/111111
2000	104. 3
2001	104 5
2002	112. 3
2003	120. 2
2004	116. 2
2005	117. 4
2006	113. 9
2007	112. 3 120. 2 116. 2 117. 4 113. 9 125. 9 123. 5
2008	123. 5
2009	114. 4
2010	114. 7
2011	141. 7
2012	158. 6
2013	158. 3
2014	153. 6
2015	148. 3
2016	114. 4 114. 7 141. 7 158. 6 158. 3 153. 6 148. 3 143. 9 138. 1 128. 9
2017	138. 1
2018	128. 9
2019	123. 6

年度

kgCO2/kWh

1950年代は薪、木炭を使用 電化以前だった

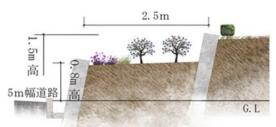
今でも灯油消費多い


電力CO2排出係数 石炭火力で上昇 2019年度まだ 震災前水準に下がらず

家庭(住宅でのCO2排出削減

冷蔵庫、エアコン 省エネ家電・最新型への更新 とくに古い物15年前超製造 テレビ 小型化

PVC太陽光自家発電+ CO2給湯器・風呂窓ガラス、サッシュの更新真空ガラス・気密サッシュ


昼間照明つけず とくにパソコン作業時

完全気候変動対策住宅:緩和策NPEH+適応策・盛土宅地+所有・使用新制度

大規模河川 洪水地域 被災回避 移転住居 画信 盛土宅地 居住禁止 下養魚池 河口より

盛土外周部断面図

洪水対策・盛土宅地 新設 戸建NPEH CO2ぜロ住宅群 PVCと水素でエネ外部供給

盛土施工時、基礎埋設 コンクリート不使用 陶磁器ブロックで基礎、外壁

スケルトンインフィル 戸建と集合住宅の中間 所有と賃貸の中間 相続税対応と住宅ローンの混合 部分公的資金 ベーシックインカム住居

数値は対策前CO2排出量とエネ消費量 省エネ効果宅地地面1.5m高 周囲擁壁は焼成煉瓦ブロック 南面屋根にPVC、エネルギー機械室に水素発生装置 倉庫棟に防災・緊急時備蓄品

←二重外壁 外周部は低木果樹・花壇 北側・高木果樹

脱コンクリート 脱セメントへ 焼成煉瓦ブロック 脱大量生産・脱近代科学工業の先駆例

煉瓦。凸型芯部用 250 煉瓦 凹型外側両面用 焼成煉瓦ブロック図 上端、下端は専用1丁半

例:住宅基礎を焼成煉瓦ブロックで 凹凸25cm角の煉瓦ブロック を焼成 はめ込み 厚さ方向にステンレス軸ボルトで締付 長手方向に超高力鋼線で圧縮締付

PVC昼間・余剰電力を充電して焼成

高温工業加熱生産工程の電化, ZeroEmission具体化+余剰電力活用

石灰石→ケイ素=原料CO2ぜロ素材 各地地場掘削可能 =原材料輸送距離短縮

脱・大規模生産工程 + 長距離輸送 小規模・需要地生産

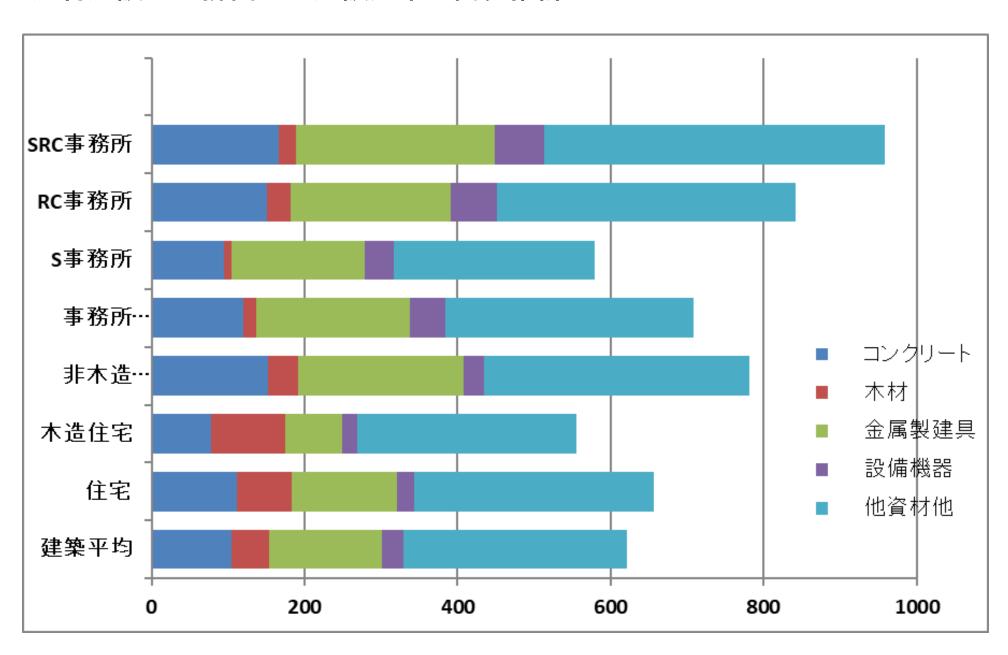
焼成煉瓦ブロック

3 Dプリンター技術:脱大量生産へ=脱近代工業の展望
→Proshumerへ 生産と消費の統合,デザインの奪回

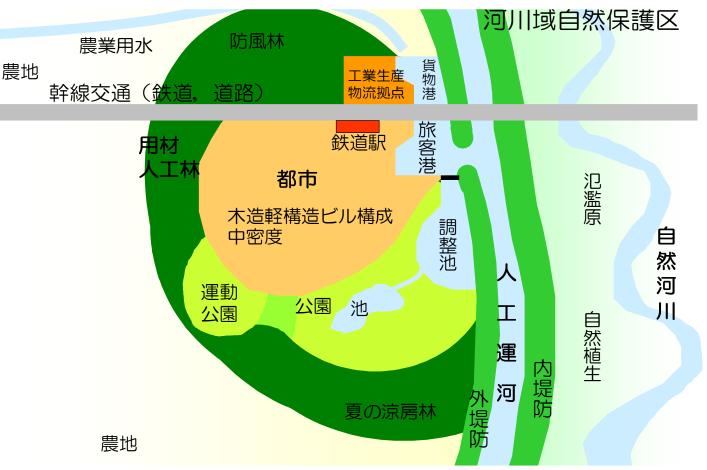
3 Dプリンター技術により 必要物・一品生産が可能に 自分が欲しいものを自分でデザインして自分で製作 製作技術情報は専門家から公開供与される前提←互恵社会 現時点では製造単価は高いが、一度作れば長寿命なら生産量は減る 3 D カッターも同様の期待:木片利用先の急拡大期待 = 脱プラスチック→海洋プラごみ汚染回避へ 中国 伝統建築の壁 セメントなし

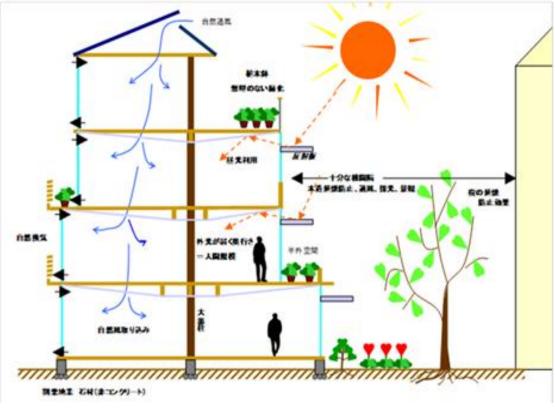
万里の長城は石材がない地域は焼成煉瓦で建設 大型焼成炉炉・木質バイオ燃料大量使用

環境から地域創造を考えるBIOCITy82号, 2020.4,系長他 気候非常事態宣言!世界に広がる気候アクションの潮流 外岡;素材利用と二酸化炭素大幅削減の期待


上海と杭州の中間、鳥鎮にて 撮影 2019.12.15

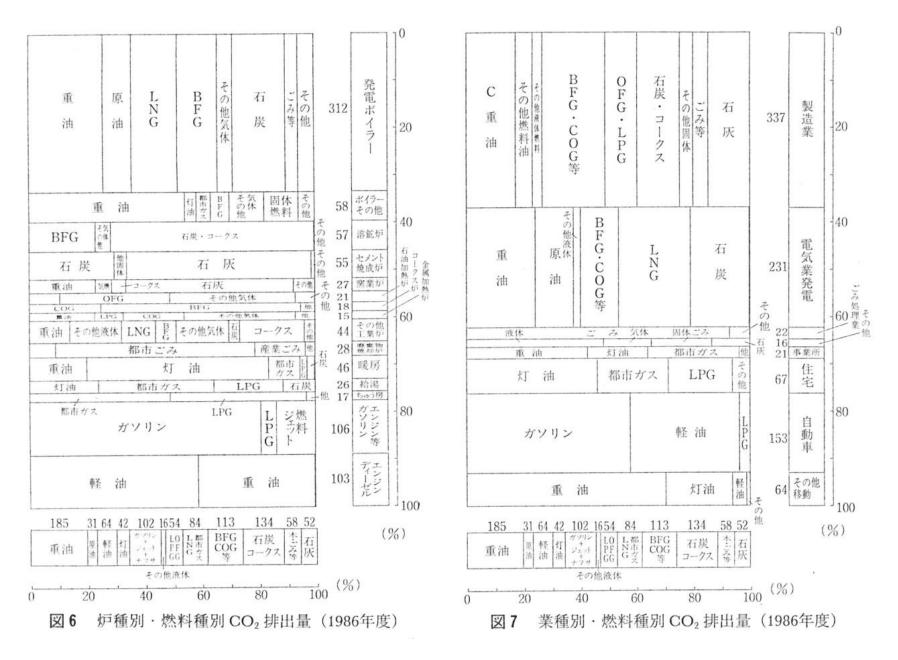
超高層ビルは非効率 利用床面積当建設LCCO2大 エレベーター面積大 垂直方向移動負担大 時間・エネルギー

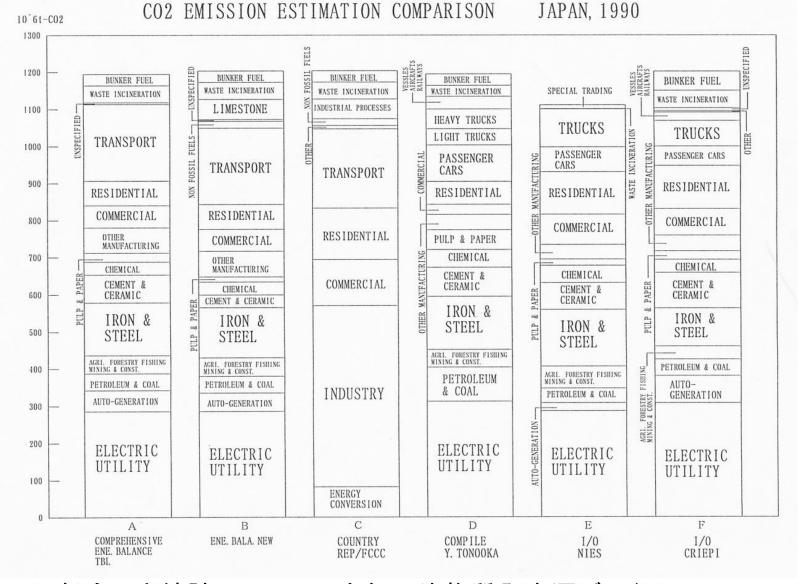



gettyimages Mohammad Zia

建物建設CO2排出量 建設産業連関表推計

環境理想都市・新設構想。厚木基地返還後・実現可能

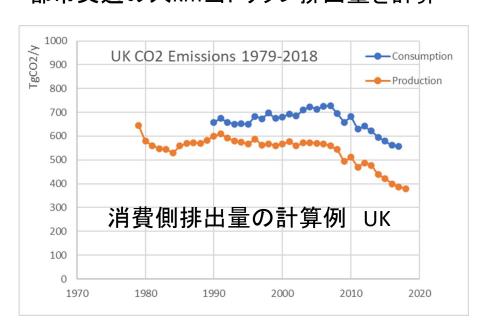


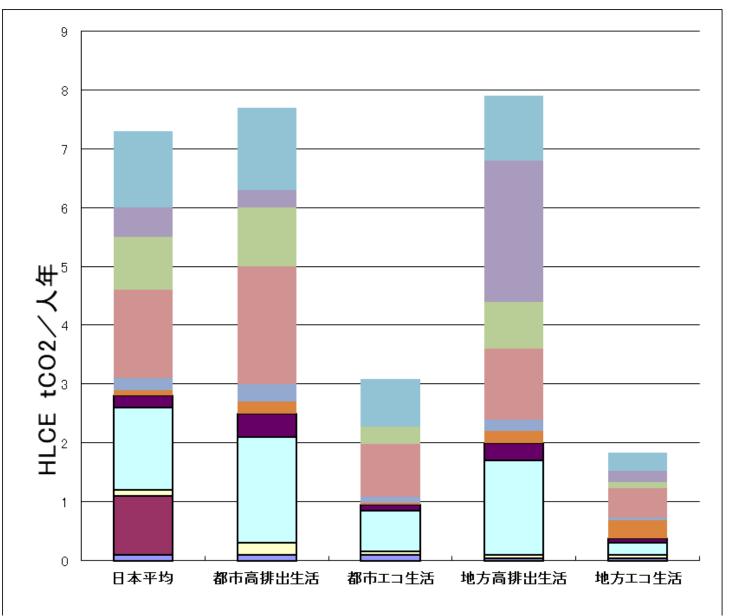

人間規模建築 地場国産材・木造 地場産長尺材使用 自然採光・自然通風 石場建=コンクリート不使用

外岡豊;自然との関係を再考した新設環境理想都市構想,サステナブルシティ・リージョン,2004年度日本建築学会大会(北海道)地球環境部門パネルディスカッション資料

CO2排出構成 削減可能性=対策効果 定量評価のために

日本のCO2排出量 様々な推計手法を網羅的に用意 1990年実態6種類




総合エネ統計 大気汚染物質発生源データ 各種エネ統計を接合 I/O産業連関表base

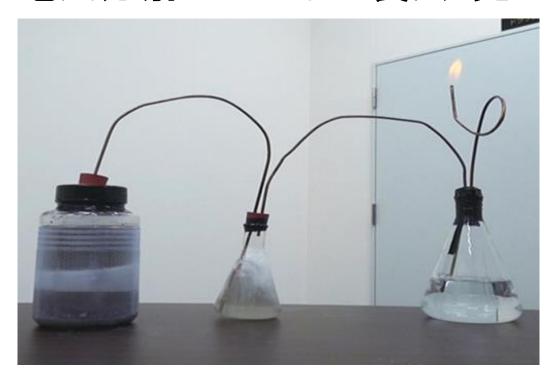
Human Life Cycle Emissions=消費側排出量

地域別対策評価はHLCEでやるべき

生活と職場の誘発排出量評価 I/O表誘発排出量推計の発展応用 I/O基本表400品目別誘発排出量原単位を用意 家計調査の品目別購入量からそれぞれの 誘発排出量を計算 業務ビルの従業者1人当誘発排出量 都市交通の人km当トリッブ排出量を計算

7-2 環境産業連関表の作成

-基本表を用いた2011,2015年CO2排出量推計


Development of Environmental Input/Output Table

—CO2 Emissions Estimation of Japan from 2011,2015 I/O Basic Tables

特玉大学名誉教授 外岡 豊* Yutaka TONOOKA ytonooka@gmail.com 県立広島大学 小林 謙介 Kensuke KOBAYASHI

行コード	行部門名称		SOx排出量 (g-SO2/☆)		CH4排出量 (g-CH4/☆)	2	☆印単位	13 木材・木製品 (家具・装備品を除く)	
2511011	板ガラス	2.273	6.494	9.698	0.654	0.048	∕kg	131000000 製材業、木製品	
2511012	安全ガラス・複層ガラス	2.043	5.831	8.713	0.591	0.042	∕kg		
2512011	ガラス繊維・同製品	2.272	3.243	7.274	1.402	0.096	∕kg	— 131100000 一般製材	
2519091	ガラス製加工素材	2.519	4.183	9.176	1.191	0.077	∕kg		
	その他のガラス製品(除別掲)	2.643	4.349	9.552	1.282	0.082	∕kg	── 131111000 板類	
2521011		0.816	0.259	1.548	0.637	0.004	∕kg	— 131112000 ひき割類	
	生コンクリート	0.205	0.099	0.461	0.157	0.001	∕kg		
	セメント製品	0.342	0.262	0.814	0.299	0.005	∕kg	── 131113000 ひき角類	
	建設用陶磁器	1.214	1.573		0.694	0.032	∕kg		
	工業用陶磁器	0.991	1.316	2.678	0.554	0.026	∕kg	—— 131114000 箱材荷造用	
	日用陶磁器	1.403	1.815	3.617	0.825	0.038	∕kg	── ┃ ┃	
2599011		1.660	3.501	3.562	0.820	0.033	∕kg	131200000 単板(ベニヤ板) 131114101	
2599021	その他の建設用土石製品	1.399	1.401	1.991	0.535	0.022	∕kg	131114101	
	炭素・黒鉛製品	4.816	6.497	9.297	7.094	0.267	∕kg	── 131300000 床板	
2599041		5.714	11.214	18.361	5.099			131114102	
	その他の窯業・土石製品	0.080	0.060	0.119	0.070	0.001	/kg	── 132000000 造作材・合板	
2611011	対鉄 フェロアロイ	1.464	2.413	5.729	3.986	0.023	/kg	→ → → → → → → → → → → → → → → → → → →	
	粗鋼(転炉)	4.753 1.465	2.571	8.857 6.031	7.631 4.246	0.00	A 7	0.7.28-29 エネルギー・資源学	7 <u>4</u> 2
	粗鋼(電気炉)	0.639	0.862	1.592	0.879	0.0	UZ	J. / . 20-23	
	普通鋼形鋼	1.136	1.806		-			/// 万智	
	普通鋼鋼板	1.450	2.302	5 100	2.700	0.013	/ ky		
	· 首通鋼鋼器	1.251	1.990	4.490	170	2011		- スルエー・谷油ラ会研や茶子	
	普通鋼小棒	0.941	1.496	3.376	77.) プ ピ	``	ニネルギー・資源学会研究発表	$\mathbf{X}\mathbf{X}$
	るの他の普通鋼熱間圧延鋼材	1.263	2.007	4.531	3 106	0.021	∠ka	* 確保(約1700至一名)	
	7 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 ·	2.663	4.234	9.555	6.543	0.021	/ka	7001	△☵
	普通鋼鋼管	1.391	2.084	4.635	3.305	0.025	/ka	← ZOOM	云讓
	2 特殊鋼鋼管	2.355	3.544	7.899	5.573	0.043			

HHOガス酸水素ガス エネコ社 画期的 製法・実用化成功 電気分解によらない製法:完全にCO2排出ゼロ燃料

実験装置 単純 水に自然石 HHOガス発生 トヨタ、三井商船 他 実走行実験中 富士吉田にガスタンク建設 実販売へ トヨタ実験都市もこの水素に期する

H2 %を調整できる新システム開発 実用化

水素はエネルギー媒体・2次加工燃料 現状では高価水の再生可能エネ電気分解=CO2フリー(排出ゼロ) CO2排出がゼロではない製法 褐炭水素製造+CCS(炭素処理) 天然ガスCH4等から分離 長距離輸送には低温液化か化学反応固定か輸送・貯蔵には高圧ガス化

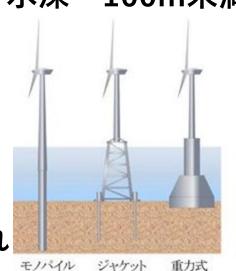
ところがE社の酸水素(HHOガス)製造水素は別物-資源に近い水+X物質(主に天然石)H2O→分解 H+H+O 電気不要 オンサイト(エネ需要場所)発生、貯蔵不要=低価格 30円/m3既達成 HHOガス直接燃焼でもよいが、現行法規上、その他の理由から純水素化使用 世界的に大量供給できるか(不明だが・可能だろう)

この水素を大量供給できれば再生可能エネ電力100%化へ急加速可能

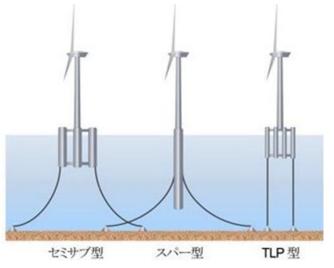
安倍・菅は2019夏、富士吉田工場訪問 利権獲得に動いている

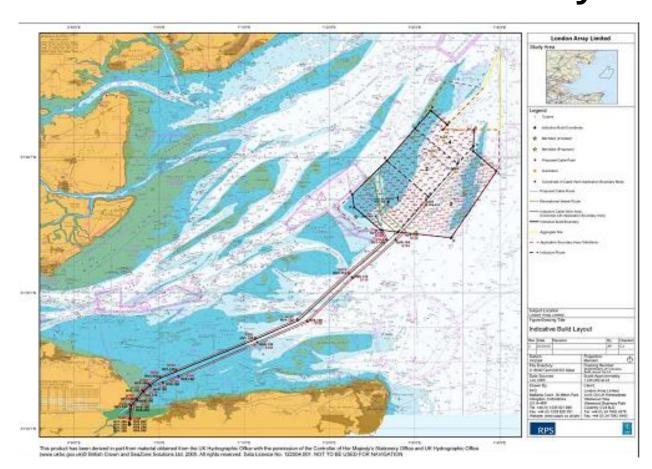
日本の風力発電

陸上風力 低周波音 健康影響 環境アセス数年 計画案件多数 しかし実現遅れ 大規模選運べない 大規模化限界



洋上風力 出模化 8 MW超 風況好条件 急に深い海 で対ニ高価 欧州に15年遅れ



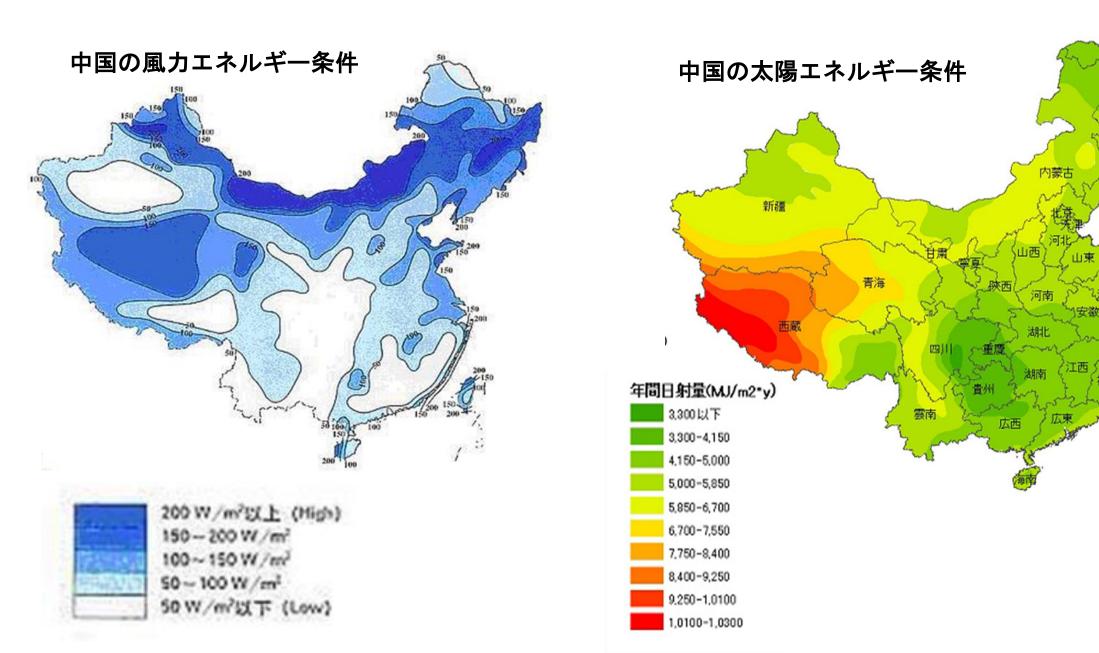

洋上風力着床式 水深 100m未満

洋上風力浮体式 水深100m以上

UK大型風力基地 London Array Wind Farm 例 欧州は遠浅 好条件

計画では 3 MW×270基 計 1 GWだった 実際には200基 Bird Strike で2/3建設で止まっている 2005年認可 資金はすぐに集まった ユーロトンネルのイギリス側 沖合20kmの場所 今なら100km沖合に10MW基を建てるだろう

中国の大規模風力ファーム ダワンチェン風力発電所の例 新疆自治区ウルムチ近郊40km



ウイグル地区9区の風区のひとつ ダワンチェン風区の面積は およそ1500k㎡、 発電機の予測導入量は240万kW 北ウイグル電力網の中心に位置 好条件 世界レベルの大型風力発電所建設 に理想的な場所と期待されている

再生エネ資源豊富な中国 とくに新彊ウイグル地区

黒龍江

吉林

菅政権 本当に排出削減する気はあるのか??

とにかく風力発電能力増強 洋上風力を国策で緊急建設 8 MW超級大型機を1km間隔で水深100m以内ぎりぎりの場所に並べる 秋田県沖が適地だがどこでも設置 石炭火力新設計画をきっぱり断念即刻中止 大型プロジェクト全部中止 リニア新幹線、大阪万博 E社水素製造を本格拡大既往自動車、船舶を排出ゼロ運転へ 製鉄環元用水素低価格供給へつなげる テレビ放映時間の短縮・テレビゲーム禁止 健康のためも含め 不要不急のスマホ利用を自主抑制 健康のためも含め 気候変動対策・市民教育の徹底